NASA, California Institute of Technology, and Jet Propulsion Laboratory Page Header Title

  • The Contents
  • The Making of
  • Where Are They Now
  • Frequently Asked Questions
  • Q & A with Ed Stone

golden record

Where are they now.

  • frequently asked questions
  • Q&A with Ed Stone

Mission Overview

The twin Voyager 1 and 2 spacecraft are exploring where nothing from Earth has flown before. Continuing on their more-than-40-year journey since their 1977 launches, they each are much farther away from Earth and the sun than Pluto. In August 2012, Voyager 1 made the historic entry into interstellar space, the region between stars, filled with material ejected by the death of nearby stars millions of years ago. Voyager 2 entered interstellar space on November 5, 2018 and scientists hope to learn more about this region. Both spacecraft are still sending scientific information about their surroundings through the Deep Space Network, or DSN.

The primary mission was the exploration of Jupiter and Saturn. After making a string of discoveries there — such as active volcanoes on Jupiter's moon Io and intricacies of Saturn's rings — the mission was extended. Voyager 2 went on to explore Uranus and Neptune, and is still the only spacecraft to have visited those outer planets. The adventurers' current mission, the Voyager Interstellar Mission (VIM), will explore the outermost edge of the Sun's domain. And beyond.

This image showcases the dates of planetary encounters for Voyager 1 and 2 with the outer planets in our solar system.

Interstellar Mission

The mission objective of the Voyager Interstellar Mission (VIM) is to extend the NASA exploration of the solar system beyond the neighborhood of the outer planets to the outer limits of the Sun's sphere of influence, and possibly beyond.

› Learn more

Planetary Voyage

The twin spacecraft Voyager 1 and Voyager 2 were launched by NASA in separate months in the summer of 1977 from Cape Canaveral, Florida. As originally designed, the Voyagers were to conduct closeup studies of Jupiter and Saturn, Saturn's rings, and the larger moons of the two planets.

› View more

Image of Voyager

Launch: Voyager 2 launched on August 20, 1977, from Cape Canaveral, Florida aboard a Titan-Centaur rocket. On September 5, Voyager 1 launched, also from Cape Canaveral aboard a Titan-Centaur rocket.

NASA Logo

Interstellar Messengers

The Voyager spacecraft against a sparkly blue background

Voyager 1 and its twin Voyager 2 are the only spacecraft ever to operate outside the heliosphere, the protective bubble of particles and magnetic fields generated by the Sun. Voyager 1 reached the interstellar boundary in 2012, while Voyager 2 (traveling slower and in a different direction than its twin) reached it in 2018.

Mission Type

Science Targets

Latest News

NASA’s Voyager Team Focuses on Software Patch, Thrusters

voyager probe

NASA’s Voyager Will Do More Science With New Power Strategy

voyager probe

Edward Stone Retires After 50 Years as NASA Voyager’s Project Scientist

voyager probe

Engineers Solve Data Glitch on NASA’s Voyager 1

voyager probe

Voyager, NASA’s Longest-Lived Mission, Logs 45 Years in Space

The Interstellar Mission

After completing the first in-depth reconnaissance of the outer planets, the twin Voyagers are on a new mission to chart the edge of interstellar space.

The Golden Record

The contents of the golden record were selected for NASA by a committee led by Carl Sagan of Cornell University.

The Spacecraft

The twin Voyagers are escaping our solar system in different directions at more than 3 astronomical units (AU) a year.

A close up of the golden record. The label says "To the makers of music - all worlds, all times."

The Pale Blue Dot

The behind-the-scenes story of the making of Voyager 1's iconic image of Earth as "a mote of dust suspended in a sunbeam."

Earth as a tiny bluish dot suspended in a grainy beam of light.

Discover More Topics From NASA

Tendrils of hot plasma stream from the Sun.

Our Solar System

An illustration of a slice of a bright orange sun, with planets, a comet and asteroids against a blue-black backround.

Heliosphere

voyager probe

Voyager, NASA’s Longest-Lived Mission, Logs 45 Years in Space

This archival photo shows engineers working on NASA's Voyager 2 spacecraft on March 23, 1977.

This archival image taken at NASA’s Jet Propulsion Laboratory on March 23, 1977, shows engineers preparing the Voyager 2 spacecraft ahead of its launch later that year.

Launched in 1977, the twin Voyager probes are NASA’s longest-operating mission and the only spacecraft ever to explore interstellar space.

NASA’s twin Voyager probes have become, in some ways, time capsules of their era: They each carry an eight-track tape player for recording data, they have about 3 million times less memory than modern cellphones, and they transmit data about 38,000 times slower than a 5G internet connection.

Yet the Voyagers remain on the cutting edge of space exploration. Managed and operated by NASA’s Jet Propulsion Laboratory in Southern California, they are the only probes to ever explore interstellar space – the galactic ocean that our Sun and its planets travel through.

The Sun and the planets reside in the heliosphere, a protective bubble created by the Sun’s magnetic field and the outward flow of solar wind (charged particles from the Sun). Researchers – some of them younger than the two distant spacecraft – are combining Voyager’s observations with data from newer missions to get a more complete picture of our Sun and how the heliosphere interacts with interstellar space.

NASA’s Solar System Interactive lets users see where the Voyagers are right now relative to the planets, the Sun, and other spacecraft. View it yourself here . Credit: NASA/JPL-Caltech

“The heliophysics mission fleet provides invaluable insights into our Sun, from understanding the corona or the outermost part of the Sun’s atmosphere, to examining the Sun’s impacts throughout the solar system, including here on Earth, in our atmosphere, and on into interstellar space,” said Nicola Fox, director of the Heliophysics Division at NASA Headquarters in Washington. “Over the last 45 years, the Voyager missions have been integral in providing this knowledge and have helped change our understanding of the Sun and its influence in ways no other spacecraft can.”

The Voyagers are also ambassadors, each carrying a golden record containing images of life on Earth, diagrams of basic scientific principles, and audio that includes sounds from nature, greetings in multiple languages, and music. The gold-coated records serve as a cosmic “message in a bottle” for anyone who might encounter the space probes. At the rate gold decays in space and is eroded by cosmic radiation, the records will last more than a billion years.

45 Years of Voyager I and II

Launched in 1977, NASA’s twin Voyager spacecraft inspired the world with pioneering visits to Jupiter, Saturn, Uranus, and Neptune. Their journey continues 45 years later as both probes explore interstellar space, the region outside the protective heliosphere created by our Sun. Researchers – some younger than the spacecraft – are now using Voyager data to solve mysteries of our solar system and beyond.

voyager probe

This archival photo shows engineers working on vibration acoustics and pyro shock testing of NASA’s Voyager on Nov. 18, 1976. Credit: NASA/JPL-Caltech

This image highlights the special cargo onboard NASA's Voyager spacecraft: the Golden Record. Each of the two Voyager spacecraft launched in 1977 carry a 12-inch gold-plated phonograph record with images and sounds from Earth.

NASA’s Voyager 1 acquired this image of a volcanic explosion on Io on March 4, 1979, about 11 hours before the spacecraft’s closest approach to the moon of Jupiter.

This approximate natural-color image from NASA's Voyager 2 shows Saturn, its rings, and four of its icy satellites. Three satellites Tethys, Dione, and Rhea are visible against the darkness of space.

Neptune’s green-blue atmosphere was shown in greater detail than ever before in this image from NASA’s Voyager 2 as the spacecraft rapidly approached its encounter with the giant planet in August 1989.

This is an image of the planet Uranus taken by the spacecraft Voyager 2 in 1986.

This updated version of the iconic "Pale Blue Dot" image taken by the Voyager 1 spacecraft uses modern image-processing software and techniques to revisit the well-known Voyager view while attempting to respect the original data and intent of those who planned the images.

Voyager 1 has entered interstellar space. NASA's spacecraft, which rose from Earth on a September morning 36 years ago, has traveled farther than anyone, or anything, in history.

This illustrated graphic was made to mark Voyager 1’s entry into interstellar space in 2012. It puts solar system distances in perspective, with the scale bar in astronomical units and each set distance beyond 1 AU (the average distance between the Sun and Earth) representing 10 times the previous distance.

Voyager Mission Timeline

This graphic highlights some of the Voyager mission’s key accomplishments. Credit: NASA/JPL-Caltech Full image details

Voyager 2: By the Numbers

This graphic provides some of the mission’s key statistics from 2018, when NASA’s Voyager 2 probe exited the heliosphere. Credit: NASA/JPL-Caltech Full image details

Beyond Expectations

Voyager 2 launched on Aug. 20, 1977, quickly followed by Voyager 1 on Sept. 5. Both probes traveled to Jupiter and Saturn, with Voyager 1 moving faster and reaching them first. Together, the probes unveiled much about the solar system’s two largest planets and their moons. Voyager 2 also became the first and only spacecraft to fly close to Uranus (in 1986) and Neptune (in 1989), offering humanity remarkable views of – and insights into – these distant worlds.

While Voyager 2 was conducting these flybys, Voyager 1 headed toward the boundary of the heliosphere. Upon exiting it in 2012 , Voyager 1 discovered that the heliosphere blocks 70% of cosmic rays, or energetic particles created by exploding stars. Voyager 2, after completing its planetary explorations, continued to the heliosphere boundary, exiting in 2018 . The twin spacecraft’s combined data from this region has challenged previous theories about the exact shape of the heliosphere.

voyager probe

Voyager 1 and 2 have accomplished a lot since they launched in 1977. This infographic highlights the mission’s major milestones, including visiting the four outer planets and exiting the heliosphere, or the protective bubble of magnetic fields and particles created by the Sun.

“Today, as both Voyagers explore interstellar space, they are providing humanity with observations of uncharted territory,” said Linda Spilker, Voyager’s deputy project scientist at JPL. “This is the first time we’ve been able to directly study how a star, our Sun, interacts with the particles and magnetic fields outside our heliosphere, helping scientists understand the local neighborhood between the stars, upending some of the theories about this region, and providing key information for future missions.”

The Long Journey

Over the years, the Voyager team has grown accustomed to surmounting challenges that come with operating such mature spacecraft, sometimes calling upon retired colleagues for their expertise or digging through documents written decades ago.

Each Voyager is powered by a radioisotope thermoelectric generator containing plutonium, which gives off heat that is converted to electricity. As the plutonium decays, the heat output decreases and the Voyagers lose electricity. To compensate , the team turned off all nonessential systems and some once considered essential, including heaters that protect the still-operating instruments from the frigid temperatures of space. All five of the instruments that have had their heaters turned off since 2019 are still working, despite being well below the lowest temperatures they were ever tested at.

Get the Latest JPL News

Recently, Voyager 1 began experiencing an issue that caused status information about one of its onboard systems to become garbled. Despite this, the system and spacecraft otherwise continue to operate normally, suggesting the problem is with the production of the status data, not the system itself. The probe is still sending back science observations while the engineering team tries to fix the problem or find a way to work around it.

“The Voyagers have continued to make amazing discoveries, inspiring a new generation of scientists and engineers,” said Suzanne Dodd, project manager for Voyager at JPL. “We don’t know how long the mission will continue, but we can be sure that the spacecraft will provide even more scientific surprises as they travel farther away from the Earth.”

More About the Mission

A division of Caltech in Pasadena, JPL built and operates the Voyager spacecraft. The Voyager missions are a part of the NASA Heliophysics System Observatory, sponsored by the Heliophysics Division of the Science Mission Directorate in Washington.

For more information about the Voyager spacecraft, visit:

https://www.nasa.gov/voyager

News Media Contact

Calla Cofield

Jet Propulsion Laboratory, Pasadena, Calif.

626-808-2469

[email protected]

  • Mobile Site
  • Staff Directory
  • Advertise with Ars

Filter by topic

  • Biz & IT
  • Gaming & Culture

Front page layout

Some hope —

Finally, engineers have a clue that could help them save voyager 1, a new signal from humanity's most distant spacecraft could be the key to restoring it..

Stephen Clark - Mar 15, 2024 11:23 pm UTC

Artist's illustration of the Voyager 1 spacecraft.

It's been four months since NASA's Voyager 1 spacecraft sent an intelligible signal back to Earth, and the problem has puzzled engineers tasked with supervising the probe exploring interstellar space.

But there's a renewed optimism among the Voyager ground team based at NASA's Jet Propulsion Laboratory in California. On March 1, engineers sent a command up to Voyager 1—more than 15 billion miles (24 billion kilometers) away from Earth—to "gently prompt" one of the spacecraft's computers to try different sequences in its software package. This was the latest step in NASA's long-distance troubleshooting to try to isolate the cause of the problem preventing Voyager 1 from transmitting coherent telemetry data.

Cracking the case

Officials suspect a piece of corrupted memory inside the Flight Data Subsystem (FDS), one of three main computers on the spacecraft, is the most likely culprit for the interruption in normal communication. Because Voyager 1 is so far away, it takes about 45 hours for engineers on the ground to know how the spacecraft reacted to their commands—the one-way light travel time is about 22.5 hours.

The FDS collects science and engineering data from the spacecraft's sensors, then combines the information into a single data package, which goes through a separate component called the Telemetry Modulation Unit to beam it back to Earth through Voyager's high-gain antenna.

Engineers are almost entirely certain the problem is in the FDS computer. The communications systems onboard Voyager 1 appear to be functioning normally, and the spacecraft is sending a steady radio tone back to Earth, but there's no usable data contained in the signal. This means engineers know Voyager 1 is alive, but they have no insight into what part of the FDS memory is causing the problem.

But Voyager 1 responded to the March 1 troubleshooting command with something different from what engineers have seen since this issue first appeared on November 14.

"The new signal was still not in the format used by Voyager 1 when the FDS is working properly, so the team wasn’t initially sure what to make of it," NASA said in an update Wednesday. "But an engineer with the agency’s Deep Space Network, which operates the radio antennas that communicate with both Voyagers and other spacecraft traveling to the Moon and beyond, was able to decode the new signal and found that it contains a readout of the entire FDS memory."

Now, engineers are meticulously comparing each bit of code from the FDS memory readout to the memory readout Voyager 1 sent back to Earth before the issue arose in November. This, they hope, will allow them to find the root of the problem. But it will probably take weeks or months for the Voyager team to take the next step. They don't want to cause more harm.

"Using that information to devise a potential solution and attempt to put it into action will take time," NASA said.

This is perhaps the most serious ailment the spacecraft has encountered since its launch in 1977. Voyager 1 flew by Jupiter and Saturn before getting a kick from Saturn's gravity to speed into the outer solar system. In 2012, Voyager 1 entered interstellar space when it crossed the heliopause, where the solar wind, the stream of particles emanating from the Sun, push against a so-called galactic wind, the particles that populate the void between the stars.

Engineers have kept Voyager 1 and its twin, Voyager 2, alive for more than 46 years , overcoming technical problems that have doomed other space missions. Both probes face waning power from their nuclear batteries, and there are concerns about their thrusters aging and fuel lines becoming clogged, among other things. But each time there is a problem, ground teams have come up with a trick to keep the Voyagers going, often referencing binders of fraying blueprints and engineering documents from the spacecraft's design and construction nearly 50 years ago.

Suzanne Dodd, NASA's project manager for Voyager 1 and its twin, Voyager 2, recently told Ars that engineers would need to pull off their "biggest miracle" to restore Voyager 1 to normal operations. Now, Voyager 1's voice from the sky has provided engineers with a clue that could help them realize this miracle.

reader comments

Channel ars technica.

Engineers Pinpoint Cause of Voyager 1 Issue, Are Working on Solution

Engineers have confirmed that a small portion of corrupted memory in one of the computers aboard NASA’s Voyager 1 has been causing the spacecraft to send unreadable science and engineering data to Earth since last November. Called the flight data subsystem (FDS), the computer is responsible for packaging the probe’s science and engineering data before the telemetry modulation unit (TMU) and radio transmitter send the data to Earth.

In early March , the team issued a “poke” command to prompt the spacecraft to send back a readout of the FDS memory, which includes the computer’s software code as well as variables (values used in the code that can change based on commands or the spacecraft’s status). Using the readout, the team has confirmed that about 3% of the FDS memory has been corrupted, preventing the computer from carrying out normal operations.

The team suspects that a single chip responsible for storing part of the affected portion of the FDS memory isn’t working. Engineers can’t determine with certainty what caused the issue. Two possibilities are that the chip could have been hit by an energetic particle from space or that it simply may have worn out after 46 years.

Although it may take weeks or months, engineers are optimistic they can find a way for the FDS to operate normally without the unusable memory hardware, which would enable Voyager 1 to begin returning science and engineering data again.

Launched in 1977 , the twin Voyager spacecraft flew by Saturn and Jupiter, and Voyager 2 flew by Uranus and Neptune. They are both exploring interstellar space, outside the bubble of particles and magnetic fields created by the Sun, called the heliosphere. Voyager 2 continues to operate normally.

News Media Contact Calla Cofield Jet Propulsion Laboratory, Pasadena, Calif. 626-808-2469 [email protected]

NASA engineers discover why Voyager 1 is sending a stream of gibberish from outside our solar system

Voyager 1 has been sending a stream of garbled nonsense since November. Now NASA engineers have identified the fault and found a potential workaround.

An artist's illustration of Voyager 1 with its antenna pointed back at Earth.

For the past five months, the Voyager 1 spacecraft has been sending a steady stream of unreadable gibberish back to Earth. Now, NASA engineers finally know why.

The 46-year-old spacecraft sends regular radio signals as it drifts further from our solar system . But in November 2023, the signals suddenly became garbled, meaning  scientists were unable to read any of its data, and they were left mystified about the fault's origins. 

In March, NASA engineers sent a command prompt, or "poke," to the craft to get a readout from its flight data subsystem (FDS) — which packages Voyager 1's science and engineering data before beaming it back to Earth. 

After decoding the spacecraft's response, the engineers have found the source of the problem: The FDS's memory has been corrupted.

Related: NASA's Voyager 1 sends readable message to Earth after 4 nail-biting months of gibberish

"The team suspects that a single chip responsible for storing part of the affected portion of the FDS memory isn't working," NASA said in a blog post Wednesday (March 13) . "Engineers can't determine with certainty what caused the issue. Two possibilities are that the chip could have been hit by an energetic particle from space or that it simply may have worn out after 46 years."

— NASA hears 'heartbeat' signal from Voyager 2 probe a week after losing contact

— Historic space photo of the week: Voyager 2 spies a storm on Saturn 42 years ago

— NASA reestablishes full contact with Voyager 2 probe after nail-biting 2-week blackout

Although it may take several months, the engineers say they can find a workaround to run the FDS without the fried chip — restoring the spacecraft's messaging output and enabling it to continue to send readable information from outside our solar system.

Sign up for the Live Science daily newsletter now

Get the world’s most fascinating discoveries delivered straight to your inbox.

Launched in 1977, Voyager 1 zipped past Saturn and Jupiter in 1979 and 1980 before flying out into interstellar space in 2012. It is now recording the conditions outside of the sun's protective magnetic field , or heliosphere, which blankets our solar system.

Voyager 1 is currently more than 15 billion miles (24 billion kilometers) from Earth, and it takes 22.5 hours for any radio signal to travel from the craft to our planet.

Ben Turner

Ben Turner is a U.K. based staff writer at Live Science. He covers physics and astronomy, among other topics like tech and climate change. He graduated from University College London with a degree in particle physics before training as a journalist. When he's not writing, Ben enjoys reading literature, playing the guitar and embarrassing himself with chess.

The moon is getting its own time zone, White House memo to NASA reveals

Chinese space junk falls to Earth over Southern California, creating spectacular fireball

Decomposing globster washes ashore in Malaysia, drawing crowds

  • TorbjornLarsson Bon voyage, Voyager! Reply
  • Jay McHue What if aliens are doing it to try to communicate with us? 🤪 Reply
Jay McHue said: What if aliens are doing it to try to communicate with us? 🤪
admin said: Voyager 1 has been sending a stream of garbled nonsense since November. Now NASA engineers have identified the fault and found a potential workaround. NASA engineers discover why Voyager 1 is sending a stream of gibberish from outside our solar system : Read more
sourloaf said: What does FSB mean?
  • View All 5 Comments

Most Popular

By Ben Turner April 05, 2024

By Sascha Pare April 05, 2024

By Patrick Pester April 05, 2024

By Daisy Dobrijevic April 05, 2024

By Joanna Thompson April 05, 2024

By Brandon Specktor April 04, 2024

By Ben Turner April 04, 2024

By Nicoletta Lanese April 04, 2024

By Jonathan Gilbert April 04, 2024

By Sascha Pare April 04, 2024

By Emily Cooke April 04, 2024

  • 2 Nuclear fusion reactor in South Korea runs at 100 million degrees C for a record-breaking 48 seconds
  • 3 'It's had 1.1 billion years to accumulate': Helium reservoir in Minnesota has 'mind-bogglingly large' concentrations
  • 4 A war of the rats was raging in North America decades before the Declaration of Independence
  • 5 Why NASA is launching 3 rockets into the solar eclipse next week
  • 2 Bite from toilet rat hospitalizes man in Canada
  • 3 Underwater robot in Siberia's Lake Baikal reveals hidden mud volcanoes — and an active fault
  • 4 'Gambling with your life': Experts weigh in on dangers of the Wim Hof method
  • 5 NASA engineers discover why Voyager 1 is sending a stream of gibberish from outside our solar system

voyager probe

After 45 years in space, the Voyager probes are just starting out

Image: Voyager 1 Saturn

As much of the space community’s attention remains focused on the delayed Artemis rocket launch and the return to the moon, two relics of the Space Age continue to  make their way across the void between the stars, sending back valuable information to scientists on Earth. 

The Voyager 1 and Voyager 2 space probes launched 45 years ago, the first on Aug. 20, 1977  and the second on Sept. 5, and they are now the farthest human-made objects from Earth, at about three times the distance of Pluto from the Sun.

Measurements indicate both probes left the interstellar bubble of our solar system a few years ago. But they’re getting old, and so engineers have been progressively shutting down their systems in the hope that their fading batteries can provide enough power for just a few more years. After that, the probes will shut down completely, and could coast through space forever.

“The two Voyagers have become our first interstellar travelers, sending back information about a place that we’ve never visited before,” said Linda Spilker, NASA’s deputy project scientist on the Voyager missions at the Jet Propulsion Laboratory in Pasadena, California.

Image: Sounds of Earth record

It now takes about 22 hours for radio signals from Earth to cover the more than 15 billion miles to Voyager 1, the farthest probe, and another 22 hours to receive its reply. Spilker, who’s worked on the probes since the first launch in 1977, said that keeping contact with them has been a monumental effort using the largest radio telescopes of the Deep Space Network, which NASA uses to relay commands to its spacecraft.

The Voyagers were a big deal when they launched at the height of the Space Age. Their main purpose was to make the first explorations of the solar system’s gas giants and their moons — Jupiter and Saturn by both Voyager 1 and Voyager 2 in 1979 and 1981, and Uranus and Neptune by Voyager 2 in 1986 and 1989, respectively.

The high-resolution color photographs they took and the data they recorded are still crucial to scientific studies today. Their final photo was the Pale Blue Dot , a portrait of the solar system taken by Voyager 1 in 1990, at about 6 billion miles away from Earth.

After their dramatic planetary fly-bys, however, the Voyager probes began a quieter phase of their journey, heading for the very edges of our solar system and beyond. Onboard instruments that measure charged particles in space indicate Voyager 1 left the protective bubble of particles emitted by the sun in 2012, while Voyager 2 left it in 2018. That means that both probes are now technically in interstellar space — between stars — and yet they are still sending back vital data from their onboard instruments, Spilker said.

Image: Voyager

 Where the Voyager probes have led, others will follow. A panel to set the nation’s scientific priorities for the next 10 years is considering a proposal for a $3.1 billion Interstellar Probe (IP) that could reach the Voyagers’ current location in as little as 15 years. If it’s approved in 2024, the probe could be launched by 2036.

Ralph McNutt, who heads space science at the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, has worked on the Voyager missions for his entire career. He witnessed the Voyager 1 launch in September 1977, and he’s now a leader of the IP project. 

“We can get to a speed of about twice that of Voyager 1, and get about twice as far before the Interstellar Probe runs out of power,” he said.

The newer probe would be much more capable than the Voyagers, which were built with 45-year-old technology, and the project’s planners now have a much better idea of what’s possible and what to expect on the journey.

The key transmitter on the new probe and its instruments, including magnetometers and spectrometers, would be many times more powerful than their 1977 equivalents. And the IP could also visit some of the mysterious Kuiper Belt objects in the outer reaches of the solar system, which are thought to be the origins of some comets, McNutt said.

Image: Jupiter's Great Red Spot

Until the Interstellar Probe gets the green light, however, the Voyagers will be humanity’s foremost representatives in interstellar space. In about 40,000 years, Voyager 1 will get relatively close to another star in the constellation Camelopardalis, while Voyager 2 will near a star in the constellation of Andromeda on its way to the giant star Sirius, which it will reach in roughly 300,000 years.

Long before then, however — in as little as 10 years — both Voyager probes will completely run out of power, Spilker said. Each probe is powered by plutonium batteries, but they’ve already started to weaken, and every few months NASA engineers order the probes to shut down a few more of their onboard systems. Their hope is that they can eke enough power out of the batteries so some of the instruments can keep working, at least until the 50th anniversary of the twin launches in 2027.

After that, who knows? 

“Fingers crossed, if everything goes as planned, we could get to the 2030s,” she said. 

Whenever their power does finally run out, the Voyager probes will serve as “silent ambassadors” to the stars, Spilker said. Each probe is carrying a record, imprinted on gold, of sounds on Earth, including a baby’s cry, a whale’s song, music by Mozart and Chuck Berry, and greetings in 55 different languages. 

“Maybe some other civilization will find them, and will want to know more about the Earth,” Spilker said. 

Tom Metcalfe writes about science and space for NBC News.

Scientists Figured Out How to Probe the Boundary of the Solar System

A revolutionary model paves the way for a journey to the Sun’s outer shield.

nasa's two voyager spacecraft exploring a turbulent region of space

  • While NASA has sent two probes out past our heliosphere—Voyager 1 and 2—there’s still a lot we don’t know about the protective shield around the Solar System.
  • A proposed Interstellar Probe Mission could send a spacecraft to investigate these long-standing mysteries, and a new study analyzes how that probe should exit our planetary system.
  • By exiting toward the tailward section of the heliosphere, a mission would maximize its scientific output and opportunities.

And in a new study led by the University of Michigan (U-M), scientists propose the best path that a future spacecraft could take to exit the heliosphere. This isn’t necessarily the fastest way to exit the cul-de-sac of our galactic neighborhood—rather, it’s the path that best positions any future spacecraft for studying the shape of the heliopause. And in order to do that, you’ve got to leave the Solar System .

“Without such a mission, we are like goldfish trying to understand the fishbowl from the inside,” Sarah A. Spitzer, a research fellow at U-M and first author on a study in the journal Frontiers in Astronomy and Space Sciences that describes this “escape route,” said in a press statement . “A future interstellar probe mission will be our first opportunity to really see our heliosphere, our home, from the outside, and to better understand its place in the local interstellar medium.”

Despite its name, the heliosphere is not a sphere. Instead, it has both a nose and tail section—the former being where the heliosphere is closest to the Sun (and pointed in the direction of its galactic journey), and the latter extending off from this point, somewhat similar to a comet.

In 2021, a collaboration of more than 1,000 scientists developed a mission concept report that detailed a possible future interstellar mission. While the report discusses various launch vehicles and payloads, it also discusses possible trajectories. While the original report suggested sending a spacecraft 45 degrees off the nose, the U-M report challenges that conclusion. It instead suggests sending the scientific payload on “a trajectory intersecting the heliospheric flank toward the tailward direction,” which will provide the best perspective and opportunity for conducting a wide range of experiments.

“We want to know how the heliosphere protects astronauts and life in general from harmful galactic radiation, but that is difficult to do when we still don’t even know the shape of our shield,” co-author Marc Kornbleuth, a Boston University research scientist, said in a press statement. “If you want to find out how far back your house extends, walking out the front door and taking a picture from the front sidewalk is likely not your best option. The best way is to go out the side door so you can see how long it is from front to back.”

This position also comes with other advantages, as models suggest that interstellar plasma may enter the heliosphere through the tail, providing another unprecedented research opportunity.

So, while Voyager 1 and 2 were humanity’s first attempts at stretching beyond our own star system, they likely won’t be our last.

Headshot of Darren Orf

Darren lives in Portland, has a cat, and writes/edits about sci-fi and how our world works. You can find his previous stuff at Gizmodo and Paste if you look hard enough. 

preview for Popular Mechanics All Sections

.css-cuqpxl:before{padding-right:0.3125rem;content:'//';display:inline;} Solar System .css-xtujxj:before{padding-left:0.3125rem;content:'//';display:inline;}

eclipse of the sun

2 Dwarf Planets Are Hiding Something Incredible

star trail's

Stars Passed in the Night—and Changed Our Climate

parker solar probe

NASA Might As Well Be Walking on the Sun

a close up of a tire

NASA Finally Opened a Canister of Asteroid Dust

large asteroid hitting earth

The 7 Greatest Cosmic Threats to Life on Earth

a meteorite impact crater in the northern arizona desert of the united states

Crater Proves the Universe Has a Wicked Curveball

a satellite in space

Voyager 1 Is Phoning Home Glitchy Nonsense Data

lightning over the railroad at night

How Solar Storms Could Wreak Havoc on Railways

scenic view of sea against orange sky,lissabon,portugal

How Big Is the Sun? Well, It’s Complicated.

lightning on venus

Looking For Life in Venus’s Hellscape

hot exoplanet, illustration

Could Planet 9 Actually Refute Newtonian Physics?

SciTechDaily

  • April 4, 2024 | Shadow Hunters: NASA Rockets To Dive Deep Into Eclipse Phenomena
  • April 4, 2024 | Groundbreaking New Data Unveils Secrets of Artic Glacier Loss
  • April 4, 2024 | New Research Reveals Keto Diet’s Potential To Combat Early Alzheimer’s
  • April 4, 2024 | MIT’s AI Breakthrough: Pioneering New Antibiotics To Combat MRSA
  • April 4, 2024 | Effective Anger Management: Chilling Out vs. Blowing Off Steam

NASA’s Longest-Lived Mission: Voyager Probes Log 45 Years in Space

By Jet Propulsion Laboratory August 19, 2022

Voyager Illustration

This artist’s rendering shows NASA’s Voyager spacecraft. On the boom to the right, the Cosmic Ray Science instrument, Low Energy Charged Particle detector, the Infrared Spectrometer and Radiometer, Ultraviolet Spectrometer, Photopolarimeter and Wide and Narrow Angle Cameras are visible. The bright gray square is an optical calibration plate for the instruments. The Golden Record, containing images and sounds from Earth, is the yellow circle on the main spacecraft body. The dish is the spacecraft’s high-gain antenna for communications with Earth. The magnetometer boom stretches out to the upper left. The radio isotope thermoelectric generators, Voyager’s power source, are visible to the lower left. The two long thin rods extending out to the left are antennas used by the Plasma Wave instrument. The Planetary Radio instrument also used these antennas when it was turned on. Credit: NASA/JPL-Caltech

Launched in 1977, the twin Voyager probes are NASA ’s longest-operating mission and the only spacecraft ever to explore interstellar space.

Launched in 1977, NASA’s twin Voyager spacecraft inspired the world with pioneering visits to Jupiter , Saturn , Uranus , and Neptune . Their journey continues 45 years later as both probes explore interstellar space, the region outside the protective heliosphere created by our Sun. Researchers – some younger than the spacecraft – are now using Voyager data to solve mysteries of our solar system and beyond.

NASA’s twin Voyager probes have become, in many ways, time capsules of their era: They each carry an eight-track tape player for recording data, they transmit data about 38,000 times slower than a 5G internet connection, and they have about 3 million times less memory than modern cellphones.

Despite this, the Voyagers remain on the cutting edge of space exploration. Managed and operated by NASA’s Jet Propulsion Laboratory ( JPL ) in Southern California, they are the only probes to ever explore interstellar space – the galactic ocean that our Sun and its planets travel through.

Voyager 2 Spacecraft JPL

This archival image taken at NASA’s Jet Propulsion Laboratory on March 23, 1977, shows engineers preparing the Voyager 2 spacecraft ahead of its launch later that year. Credit: NASA/JPL-Caltech

The Sun and the planets reside in the heliosphere, a protective bubble created by the Sun’s magnetic field and the outward flow of solar wind (charged particles from the Sun). Scientists – some of them younger than the two distant spacecraft – are combining Voyager’s observations with data from newer missions to get a more complete picture of our Sun and how the heliosphere interacts with interstellar space.

Voyager Testing

This archival photo shows engineers working on vibration acoustics and pyro shock testing of NASA’s Voyager on November 18, 1976. Credit: NASA/JPL-Caltech

“The heliophysics mission fleet provides invaluable insights into our Sun, from understanding the corona or the outermost part of the Sun’s atmosphere, to examining the Sun’s impacts throughout the solar system, including here on Earth, in our atmosphere, and on into interstellar space,” said Nicola Fox, director of the Heliophysics Division at NASA Headquarters in Washington. “Over the last 45 years, the Voyager missions have been integral in providing this knowledge and have helped change our understanding of the Sun and its influence in ways no other spacecraft can.”

Voyager's Special Cargo The Golden Record

This image highlights the special cargo onboard NASA’s Voyager spacecraft: the Golden Record. Each of the two Voyager spacecraft launched in 1977 carry a 12-inch gold-plated phonograph record with images and sounds from Earth. Credit: NASA/JPL-Caltech

The Voyagers are also ambassadors for humanity, each carrying a golden record containing images of life on Earth, diagrams of basic scientific principles, and audio that includes sounds from nature, greetings in multiple languages, and music. The gold-coated records serve as a cosmic “message in a bottle” for anyone who might encounter the space probes. At the rate gold decays in space and is eroded by cosmic radiation, the records will last more than a billion years.

Jupiter Voyager 2

This processed color image of Jupiter was produced in 1990 by the U.S. Geological Survey from a Voyager image captured in 1979. Zones of light-colored, ascending clouds alternate with bands of dark, descending clouds. Credit: NASA/JPL/USGS

Beyond Expectations

Voyager 2 launched on August 20, 1977, quickly followed by Voyager 1 on September 5. Both probes traveled to Jupiter and Saturn , with Voyager 1 moving faster and reaching them first. Together, the probes unveiled much about the solar system’s two largest planets and their moons. Voyager 2 also became the first and only spacecraft to fly close to Uranus (in 1986) and Neptune (in 1989), offering humanity remarkable views of – and insights into – these distant worlds.

Jupiter's Great Red Spot and White Ovals Voyager 1

This photo of Jupiter was taken by NASA’s Voyager 1 on the evening of March 1, 1979, from a distance of 2.7 million miles (4.3 million kilometers). The photo shows Jupiter’s Great Red Spot (top) and one of the white ovals. Credit: NASA/JPL

While Voyager 2 was conducting these flybys, Voyager 1 headed toward the boundary of the heliosphere. Upon exiting it in 2012 , Voyager 1 discovered that the heliosphere blocks 70% of cosmic rays, or energetic particles created by exploding stars. Voyager 2, after completing its planetary explorations, continued to the heliosphere boundary, exiting in 2018 . The twin spacecraft’s combined data from this region has challenged previous theories about the exact shape of the heliosphere.

Volcanic Explosion on Io Voyager 1

NASA’s Voyager 1 acquired this image of a volcanic explosion on Io on March 4, 1979, about 11 hours before the spacecraft’s closest approach to the moon of Jupiter. Credit: NASA/JPL

“Today, as both Voyagers explore interstellar space, they are providing humanity with observations of uncharted territory,” said Linda Spilker, Voyager’s deputy project scientist at JPL. “This is the first time we’ve been able to directly study how a star, our Sun, interacts with the particles and magnetic fields outside our heliosphere, helping scientists understand the local neighborhood between the stars, upending some of the theories about this region, and providing key information for future missions.”

Saturn and 4 Icy Moons Voyager 2

This approximate natural-color image from NASA’s Voyager 2 shows Saturn, its rings, and four of its icy satellites. Three satellites Tethys, Dione, and Rhea are visible against the darkness of space. Credit: NASA/JPL/USGS

The Long Journey

Over the years, the Voyager team has grown accustomed to surmounting challenges that come with operating such mature spacecraft, sometimes calling upon retired colleagues for their expertise or digging through documents written decades ago.

Neptune Voyager 2

Neptune’s green-blue atmosphere was shown in greater detail than ever before in this image from NASA’s Voyager 2 as the spacecraft rapidly approached its encounter with the giant planet in August 1989. Credit: NASA/JPL

Uranus Voyager 2

This is an image of the planet Uranus taken by the spacecraft Voyager 2 in 1986. Credit: NASA/JPL-Caltech

Triton Voyager 2

This image, taken by NASA’s Voyager 2 early in the morning of August 23, 1989, is a false color image of Triton, Neptune’s largest satellite; mottling in the bright southern hemisphere is present. Credit: NASA/JPL

Pale Blue Dot

This updated version of the iconic “Pale Blue Dot” image taken by the Voyager 1 spacecraft uses modern image-processing software and techniques to revisit the well-known Voyager view while attempting to respect the original data and intent of those who planned the images. Credit: NASA/JPL-Caltech

Each Voyager is powered by a radioisotope thermoelectric generator containing plutonium, which gives off heat that is converted to electricity. As the plutonium decays, the heat output decreases and the Voyagers lose electricity. To compensate , the team turned off all nonessential systems and some once considered essential, including heaters that protect the still-operating instruments from the frigid temperatures of space. All five of the instruments that have had their heaters turned off since 2019 are still working, despite being well below the lowest temperatures they were ever tested at.

Voyager Goes Interstellar

This illustrated graphic was made to mark Voyager 1’s entry into interstellar space in 2012. It puts solar system distances in perspective, with the scale bar in astronomical units and each set distance beyond 1 AU (the average distance between the Sun and Earth) representing 10 times the previous distance. Credit: NASA/JPL-Caltech

Recently, Voyager 1 began experiencing an issue that caused status information about one of its onboard systems to become garbled. Despite this, the system and spacecraft otherwise continue to operate normally, suggesting the problem is with the production of the status data, not the system itself. The probe is still sending back science observations while the engineering team tries to fix the problem or find a way to work around it.

Voyager Mission Timeline

This graphic highlights some of the Voyager mission’s key accomplishments. Credit: NASA/JPL-Caltech

“The Voyagers have continued to make amazing discoveries, inspiring a new generation of scientists and engineers,” said Suzanne Dodd, project manager for Voyager at JPL. “We don’t know how long the mission will continue, but we can be sure that the spacecraft will provide even more scientific surprises as they travel farther away from the Earth.”

Voyager 2 By the Numbers

This graphic provides some of the mission’s key statistics from 2018, when NASA’s Voyager 2 probe exited the heliosphere. Credit: NASA/JPL-Caltech

More About the Mission

A division of Caltech in Pasadena, JPL built and operates the Voyager spacecraft. The Voyager missions are a part of the NASA Heliophysics System Observatory, sponsored by the Heliophysics Division of the Science Mission Directorate in Washington.

More on SciTechDaily

NASA Voyager Spacecraft Entering Interstellar Space

Voyager 2 Illuminates Boundary of Interstellar Space 11 Billion Miles From Earth

NASA’s Voyager 2 Probe Enters Interstellar Space

Voyager 2 Probe Enters Interstellar Space, Over 18 Billion Kilometers from Earth

Mysteries abound: nasa studying the edge of the sun’s magnetic bubble.

voyager probe

It’s Official – Voyager 1 Has Entered Interstellar Space

Voyager 2 Nearing Interstellar Space

Hear the Eerie Sounds of Interstellar Space Captured by NASA’s Voyager

voyager probe

NASA’s Voyager 1 Explores the Outer Limits of Our Heliosphere

Nasa’s interstellar boundary explorer charts 11 years of change to heliosphere.

As Solar Wind Blows Our Heliosphere Balloons

IBEX Reveals How Solar Wind Changes Our Heliosphere

9 comments on "nasa’s longest-lived mission: voyager probes log 45 years in space".

voyager probe

How is information transmitted from Voyager back to Earth and vice versa? WiFi? I want WiFi that strong for my house. Serious question.

voyager probe

“The uplink communications are executed via S-band microwave communications. The downlink communications are carried out by an X-band microwave transmitter on board the spacecraft, with an S-band transmitter as a back-up. All long-range communications to and from the two Voyagers have been carried out using their 3.7-meter (12 ft) high-gain antennas. The high-gain antenna has a beamwidth of 0.5° for X-band, and 2.3° for S-band.[38]: 17  (The low-gain antenna has a 7 dB gain and 60° beamwidth.)[38]: 17 

Because of the inverse-square law in radio communications, the digital data rates used in the downlinks from the Voyagers have been continually decreasing the farther that they get from the Earth. For example, the data rate used from Jupiter was about 115,000 bits per second. That was halved at the distance of Saturn, and it has gone down continually since then.[38] Some measures were taken on the ground along the way to reduce the effects of the inverse-square law. In between 1982 and 1985, the diameters of the three main parabolic dish antennas of the Deep Space Network were increased from 64 to 70 m (210 to 230 ft)[38]: 34  dramatically increasing their areas for gathering weak microwave signals.

Whilst the craft were between Saturn and Uranus the onboard software was upgraded to do a degree of image compression and to use a more efficient Reed-Solomon error-correcting encoding.[38]: 33 

Then between 1986 and 1989, new techniques were brought into play to combine the signals from multiple antennas on the ground into one, more powerful signal, in a kind of an antenna array.[38]: 34  This was done at Goldstone, California, Canberra, and Madrid using the additional dish antennas available there. Also, in Australia, the Parkes Radio Telescope was brought into the array in time for the fly-by of Neptune in 1989. In the United States, the Very Large Array in New Mexico was brought into temporary use along with the antennas of the Deep Space Network at Goldstone.[38]: 34  Using this new technology of antenna arrays helped to compensate for the immense radio distance from Neptune to the Earth.”

voyager probe

Amazing accomplishment for humanity. This shows what humans can do when their energy is not consumed by fighting with each other. Not only is this a model for scientific inspiration, it’s a great argument for world peace.

voyager probe

The Voyager probes are *not* the only interstellar vehicles. You forgot Pioneer 10.

There are five interstellar probes, all launched by the American space agency NASA: Voyager 1, Voyager 2, Pioneer 10, Pioneer 11 and New Horizons. As of 2019, Voyager 1, Voyager 2 and Pioneer 10 are the only probes to have actually reached interstellar space. The other two are on interstellar trajectories.

Good catch!

voyager probe

The communications accomplishment exceeds even the accomplishment of placing the probes on trajectory.

Leave a comment Cancel reply

Email address is optional. If provided, your email will not be published or shared.

Save my name, email, and website in this browser for the next time I comment.

NASA Logo

Suggested Searches

  • Climate Change
  • Expedition 64
  • Mars perseverance
  • SpaceX Crew-2
  • International Space Station
  • View All Topics A-Z

Humans in Space

Earth & climate, the solar system, the universe, aeronautics, learning resources, news & events.

2024 Total Solar Eclipse Broadcast

2024 Total Solar Eclipse Broadcast

In November 1969, Apollo 12 astronauts returning from Moon experienced a solar eclipse as the Earth blocked the Sun shortly before splashdown

Eclipses Near and Far

Scientists Pursue the Total Solar Eclipse with NASA Jet Planes

Scientists Pursue the Total Solar Eclipse with NASA Jet Planes

  • Search All NASA Missions
  • A to Z List of Missions
  • Upcoming Launches and Landings
  • Spaceships and Rockets
  • Communicating with Missions
  • James Webb Space Telescope
  • Hubble Space Telescope
  • Why Go to Space
  • Astronauts Home
  • Commercial Space
  • Destinations
  • Living in Space
  • Explore Earth Science
  • Earth, Our Planet
  • Earth Science in Action
  • Earth Multimedia
  • Earth Science Researchers
  • Pluto & Dwarf Planets
  • Asteroids, Comets & Meteors
  • The Kuiper Belt
  • The Oort Cloud
  • Skywatching
  • The Search for Life in the Universe
  • Black Holes
  • The Big Bang
  • Dark Energy & Dark Matter
  • Earth Science
  • Planetary Science
  • Astrophysics & Space Science
  • The Sun & Heliophysics
  • Biological & Physical Sciences
  • Lunar Science
  • Citizen Science
  • Astromaterials
  • Aeronautics Research
  • Human Space Travel Research
  • Science in the Air
  • NASA Aircraft
  • Flight Innovation
  • Supersonic Flight
  • Air Traffic Solutions
  • Green Aviation Tech
  • Drones & You
  • Technology Transfer & Spinoffs
  • Space Travel Technology
  • Technology Living in Space
  • Manufacturing and Materials
  • Science Instruments
  • For Kids and Students
  • For Educators
  • For Colleges and Universities
  • For Professionals
  • Science for Everyone
  • Requests for Exhibits, Artifacts, or Speakers
  • STEM Engagement at NASA
  • NASA's Impacts
  • Centers and Facilities
  • Directorates
  • Organizations
  • People of NASA
  • Internships
  • Our History
  • Doing Business with NASA
  • Get Involved
  • Aeronáutica
  • Ciencias Terrestres
  • Sistema Solar
  • All NASA News
  • Video Series on NASA+
  • Newsletters
  • Social Media
  • Media Resources
  • Upcoming Launches & Landings
  • Virtual Events
  • Sounds and Ringtones
  • Interactives
  • STEM Multimedia

The official Expedition 71 crew portrait with (bottom row from left) Roscosmos cosmonaut Alexander Grebenkin and NASA astronauts Mike Barratt, Matthew Dominick, and Jeanette Epps. In the back row (from left) are, NASA astronaut Loral O'Hara and Roscosmos cosmonauts Nikolai Chub and Oleg Kononenko.

Expedition 71

grayscale view of lunar surface with a smeared streak in the center of the image

NASA’s LRO Finds Photo Op as It Zips Past SKorea’s Danuri Moon Orbiter

Hubble Peers at Pair of Closely Interacting Galaxies

Hubble Peers at Pair of Closely Interacting Galaxies

voyager probe

NASA Astronaut Loral O’Hara, Expedition 70 Science Highlights

2021 Astronaut Candidates Stand in Recognition

Diez maneras en que los estudiantes pueden prepararse para ser astronautas

image of an astronaut posing next to 3D printer aboard the space station

Optical Fiber Production

A satellite image from December 2023 showing a large, sediment-rich plume from the Mississippi River spreading down the Gulf Coast of Louisiana and Texas following winter rains.

How NASA Spotted El Niño Changing the Saltiness of Coastal Waters

Earth Day Toolkit

Earth Day Toolkit

A woman stands on the left side of the image, seen from the waist up. She wears a white clean suit that covers her arms, torso, and over her head. She also has on a white mask that covers her nose and mouth and blue latex gloves. Behind her and to the right in the image is a large, rectangular piece of equipment - the PACE satellite. The side of the satellite visible is black and reflects light off it. Behind the woman and PACE is a large wall that has a green gridded pattern on it.

Veronica T. Pinnick Put NASA’s PACE Mission through Its Paces

Artist’s concept depicts the NEOWISE spacecraft

NASA’s NEOWISE Extends Legacy With Decade of Near-Earth Object Data

Harnessing the 2024 Eclipse for Ionospheric Discovery with HamSCI

Harnessing the 2024 Eclipse for Ionospheric Discovery with HamSCI

Image of the Sun with sunspots

How NASA’s Roman Telescope Will Measure Ages of Stars

NASA’s Webb Probes an Extreme Starburst Galaxy

NASA’s Webb Probes an Extreme Starburst Galaxy

Amendment 8 A.44 Earth Action: Health and Air Quality Applied Sciences Team Final Text and Due Dates.

Amendment 8 A.44 Earth Action: Health and Air Quality Applied Sciences Team Final Text and Due Dates.

Introduction to Spectrum graphic.

Introduction to Spectrum

Jake Revesz, an electronic systems engineer at NASA Langley Research Center, is pictured here prepping a UAS for flight. Jake is kneeling on pavement working with the drone. He is wearing a t-shirt, khakis, and a hard hat.

NASA Langley Team to Study Weather During Eclipse Using Uncrewed Vehicles

A silver aircraft model with eight propellors hovers in this image with green circles showing the motion of air moving around the propellor and blue waves flowing below showing the motion of air coming from the propellors down to the ground.

NASA Noise Prediction Tool Supports Users in Air Taxi Industry

Illustration showing several future aircraft concepts flying over a mid-sized city with a handful of skyscrapers.

ARMD Solicitations

Princeton University undergraduate Kate Sheldon in a lab, holding a rectangular device in both hands

Tech Today: Synthetic DNA Diagnoses COVID, Cancer

David Woerner

David Woerner

Lazurite's ArthroFree Wireless Camera System on a table, held by a person wearing surgical gloves.

Tech Today: Cutting the Knee Surgery Cord

voyager probe

NASA Partnerships Bring 2024 Total Solar Eclipse to Everyone

Dr. Makenzie Lystrup shakes hands Dr. Carolyn R. Lepre at a table, with Dr. Laurie Couch and Dave Pierce standing behind them.

NASA, Salisbury U. Enact Agreement for Workforce Development  

A rocket launches against a blue sky. A cloud of dust gathers below the rocket.

NASA Wallops to Launch Three Sounding Rockets During Solar Eclipse 

Astronaut Marcos Berrios

Astronauta de la NASA Marcos Berríos

image of an experiment facility installed in the exterior of the space station

Resultados científicos revolucionarios en la estación espacial de 2023

Nasa’s voyager spacecraft still reaching for the stars after 40 years.

The headshot image of NASA

Humanity’s farthest and longest-lived spacecraft, Voyager 1 and 2, achieve 40 years of operation and exploration this August and September. Despite their vast distance, they continue to communicate with NASA daily, still probing the final frontier.

Their story has not only impacted generations of current and future scientists and engineers, but also Earth’s culture, including film, art and music. Each spacecraft carries a Golden Record of Earth sounds, pictures and messages. Since the spacecraft could last billions of years, these circular time capsules could one day be the only traces of human civilization.

“I believe that few missions can ever match the achievements of the Voyager spacecraft during their four decades of exploration,” said Thomas Zurbuchen, associate administrator for NASA’s Science Mission Directorate (SMD) at NASA Headquarters. “They have educated us to the unknown wonders of the universe and truly inspired humanity to continue to explore our solar system and beyond.”

The Voyagers have set numerous records in their unparalleled journeys. In 2012, Voyager 1, which launched on Sept. 5, 1977, became the only spacecraft to have entered interstellar space . Voyager 2, launched on Aug. 20, 1977, is the only spacecraft to have flown by all four outer planets – Jupiter, Saturn, Uranus and Neptune. Their numerous planetary encounters include discovering the first active volcanoes beyond Earth, on Jupiter’s moon Io ; hints of a subsurface ocean on Jupiter’s moon Europa ; the most Earth-like atmosphere in the solar system, on Saturn’s moon Titan ; the jumbled-up, icy moon Miranda at Uranus; and icy-cold geysers on Neptune’s moon Triton .

Though the spacecraft have left the planets far behind – and neither will come remotely close to another star for 40,000 years – the two probes still send back observations about conditions where our Sun’s influence diminishes and interstellar space begins.

Voyager 1, now almost 13 billion miles from Earth, travels through interstellar space northward out of the plane of the planets. The probe has informed researchers that cosmic rays, atomic nuclei accelerated to nearly the speed of light, are as much as four times more abundant in interstellar space than in the vicinity of Earth. This means the heliosphere, the bubble-like volume containing our solar system’s planets and solar wind, effectively acts as a radiation shield for the planets. Voyager 1 also hinted that the magnetic field of the local interstellar medium is wrapped around the heliosphere.

Voyager 2, now almost 11 billion miles from Earth, travels south and is expected to enter interstellar space in the next few years. The different locations of the two Voyagers allow scientists to compare right now two regions of space where the heliosphere interacts with the surrounding interstellar medium using instruments that measure charged particles, magnetic fields, low-frequency radio waves and solar wind plasma. Once Voyager 2 crosses into the interstellar medium, they will also be able to sample the medium from two different locations simultaneously.

“None of us knew, when we launched 40 years ago, that anything would still be working, and continuing on this pioneering journey,” said Ed Stone, Voyager project scientist based at Caltech in Pasadena, California. “The most exciting thing they find in the next five years is likely to be something that we didn’t know was out there to be discovered.” 

The twin Voyagers have been cosmic overachievers, thanks to the foresight of mission designers. By preparing for the radiation environment at Jupiter, the harshest of all planets in our solar system, the spacecraft were well equipped for their subsequent journeys. Both Voyagers are equipped with long-lasting power supplies, as well as redundant systems that allow the spacecraft to switch to backup systems autonomously when necessary. Each Voyager carries three radioisotope thermoelectric generators, devices that use the heat energy generated from the decay of plutonium-238 – only half of it will be gone after 88 years.

Space is almost empty, so the Voyagers are not at a significant level of risk of bombardment by large objects. However, Voyager 1’s interstellar space environment is not a complete void. It’s filled with clouds of dilute material remaining from stars that exploded as supernovae millions of years ago. This material doesn’t pose a danger to the spacecraft, but is a key part of the environment that the Voyager mission is helping scientists study and characterize. 

Because the Voyagers’ power decreases by four watts per year, engineers are learning how to operate the spacecraft under ever-tighter power constraints. And to maximize the Voyagers’ life spans, they also have to consult documents written decades earlier describing commands and software, in addition to the expertise of former Voyager engineers.

“The technology is many generations old, and it takes someone with 1970s design experience to understand how the spacecraft operate and what updates can be made to permit them to continue operating today and into the future,” said Suzanne Dodd, Voyager project manager based at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California.

Team members estimate they will have to turn off the last science instrument by 2030. However, even after the spacecraft go silent, they’ll continue on their trajectories at their present speed of more than 30,000 mph (48,280 kilometers per hour), completing an orbit within the Milky Way every 225 million years.

The Voyager spacecraft were built by JPL, which continues to operate both. The Voyager missions are part of the NASA Heliophysics System Observatory, sponsored by the Heliophysics Division of SMD.

For more information about the Voyager spacecraft, visit:

Dwayne Brown / Laurie Cantillo Headquarters, Washington 202-358-1726 / 202-358-1077 [email protected]  /  [email protected] Elizabeth Landau / Jia-Rui Cook Jet Propulsion Laboratory, Pasadena, Calif. 818-354-6425 / 818-354-0724 [email protected] / [email protected]

  • The Inventory

Support Quartz

Fund next-gen business journalism with $10 a month

Free Newsletters

NASA's Voyager 1 probe has been glitching for months and we finally know why

Corrupted memory hardware is causing the mission to transmit gibberish, but there may be a way to fix it.

An artist’s concept of the Voyager 1 spacecraft in interstellar space.

After months of sending unusable data to mission control, there’s finally hope for the Voyager 1 spacecraft. NASA engineers pinpointed the cause behind the mission’s odd anomaly, and think they can help the interstellar probe make sense again.

Engineers at NASA’s Jet Propulsion Laboratory believe the Voyager 1 spacecraft has been sending nonsensical data due to corrupted memory hardware in the spacecraft’s flight data system (FDS). “The team suspects that a single chip responsible for storing part of the affected portion of the FDS memory isn’t working,” NASA wrote in an update.

FDS collects data from Voyager’s science instruments, as well as engineering data about the health of the spacecraft, and combines them into a single package that’s transmitted to Earth through one of the probe’s subsystems, the telemetry modulation unit (TMU), in binary code.

FDS and TMU have been having trouble communicating with one another. As a result, TMU has been sending data to mission control in a repeating pattern of ones and zeroes. NASA’s engineers aren’t quite sure what corrupted the FDS memory hardware; they think that either the chip was hit by an energetic particle from space or that it’s just worn out after operating for 46 years.

Voyager 1 launched in 1977, less than a month after its twin probe, Voyager 2, began its own journey to space. The probe ventured into interstellar space in August 2012, becoming the first spacecraft to leave the heliosphere.

The problem first began in May 2022, when the probe suddenly started sending nonsensical attitude articulation and control (AACS) data . Engineers resolved the issue by sending the telemetry data through one of the spacecraft’s other computers. In December 2023, Voyager 1 started speaking gibberish again .

On March 1, the team sent a “poke” to the spacecraft’s data system, a command that gently prompts FDS to try different sequences in its software package in an effort to pinpoint the corrupted section. Two days later, Voyager 1 sent a signal that contained a readout of the entire FDS memory , which helped the team pinpoint the source of the glitch by comparing this memory readout with a previous one to look for discrepancies in the code.

“Using the readout, the team has confirmed that about 3% of the FDS memory has been corrupted, preventing the computer from carrying out normal operations,” NASA wrote in its update.

The engineers are hoping to resolve the issue by finding a way for FDS to operate normally without the corrupted memory hardware, enabling Voyager 1 to begin transmitting data about the cosmos and continue its journey through deep space.

A version of this article originally appeared on Gizmodo .

📬 Sign up for the Daily Brief

Our free, fast, and fun briefing on the global economy, delivered every weekday morning.

voyager probe

NASA's Voyager 1 probe has been glitching for months and we finally know why

An artist’s concept of the Voyager 1 spacecraft in interstellar space.

After months of sending unusable data to mission control, there’s finally hope for the Voyager 1 spacecraft. NASA engineers pinpointed the cause behind the mission’s odd anomaly, and think they can help the interstellar probe make sense again.

Engineers at NASA’s Jet Propulsion Laboratory believe the Voyager 1 spacecraft has been sending nonsensical data due to corrupted memory hardware in the spacecraft’s flight data system (FDS). “The team suspects that a single chip responsible for storing part of the affected portion of the FDS memory isn’t working,” NASA wrote in an update.

FDS collects data from Voyager’s science instruments, as well as engineering data about the health of the spacecraft, and combines them into a single package that’s transmitted to Earth through one of the probe’s subsystems, the telemetry modulation unit (TMU), in binary code.

FDS and TMU have been having trouble communicating with one another. As a result, TMU has been sending data to mission control in a repeating pattern of ones and zeroes. NASA’s engineers aren’t quite sure what corrupted the FDS memory hardware; they think that either the chip was hit by an energetic particle from space or that it’s just worn out after operating for 46 years.

Voyager 1 launched in 1977, less than a month after its twin probe, Voyager 2, began its own journey to space. The probe ventured into interstellar space in August 2012, becoming the first spacecraft to leave the heliosphere.

The problem first began in May 2022, when the probe suddenly started sending nonsensical attitude articulation and control (AACS) data . Engineers resolved the issue by sending the telemetry data through one of the spacecraft’s other computers. In December 2023, Voyager 1 started speaking gibberish again .

On March 1, the team sent a “poke” to the spacecraft’s data system, a command that gently prompts FDS to try different sequences in its software package in an effort to pinpoint the corrupted section. Two days later, Voyager 1 sent a signal that contained a readout of the entire FDS memory , which helped the team pinpoint the source of the glitch by comparing this memory readout with a previous one to look for discrepancies in the code.

“Using the readout, the team has confirmed that about 3% of the FDS memory has been corrupted, preventing the computer from carrying out normal operations,” NASA wrote in its update.

The engineers are hoping to resolve the issue by finding a way for FDS to operate normally without the corrupted memory hardware, enabling Voyager 1 to begin transmitting data about the cosmos and continue its journey through deep space.

A version of this article originally appeared on Gizmodo .

For the latest news, Facebook , Twitter and Instagram .

An artist’s concept of the Voyager 1 spacecraft in interstellar space.

Logo

Voyager 1 Issue Tracked Down To Defective Memory Chip

voyager probe

After more than forty-six years all of us are likely to feel the wear of time, and Voyager 1 is no different. Following months of harrowing troubleshooting as the far-flung spacecraft stopped returning sensible data, NASA engineers now feel confident that they have tracked down the cause for the problem: a single defective memory chip . Why this particular chip failed is unknown, but possibilities range from wear and tear to an energetic particle hitting it and disrupting its operation.

We’ve covered the Voyager 1 troubleshooting saga so far, with the initial garbled responses attributed to a range of systems, but narrowed down to the Flight Data Subsystem (FDS), which prepares data for transmission by the telemetry modulation unit (TMU). Based on a recent ‘poke’ command that returned a memory dump engineers concluded that the approximately 3% of corrupted data fit with this one memory chip, opening the possibility of a workaround.

Recently NASA engineers have also been working on patching up the firmware in both Voyager spacecraft, against the background of the dwindling energy produced by the radioisotope generators that have kept both spacecraft powered and warm, even in the cold, dark depths of Deep Space far beyond the light of our Sun.

voyager probe

One thought on “ Voyager 1 Issue Tracked Down To Defective Memory Chip ”

I wish the scientists all the wisdom and luck in finding a workaround! I guess that they crammed the ram full, when they designed it, so probably they will have to trade in some other functionality. Not an easy decision, I imagine. I don’t think there’s much that can be left out without rendering Voyager incapable.

Leave a Reply Cancel reply

Please be kind and respectful to help make the comments section excellent. ( Comment Policy )

This site uses Akismet to reduce spam. Learn how your comment data is processed .

Never miss a hack

If you missed it.

voyager probe

Where Graph Theory Meets The Road: The Algorithms Behind Route Planning

voyager probe

Space Mirrors: Dreams Of Turning The Night Into Day Around The Clock

voyager probe

Mining And Refining: Tungsten

voyager probe

Wrencher-2: A Bold New Direction For Hackaday

voyager probe

Tech Support… Can AI Be Worse?

Our columns.

voyager probe

Fictional Computers: The Three Body Problem

voyager probe

Hackaday Podcast Episode 265: Behind The Epic SSH Hack, 1980s Cyber Butler, The Story Of Season 7

voyager probe

This Week In Security: XZ, ATT, And Letters Of Marque

voyager probe

Ultimate Power: Lithium-Ion Batteries In Series

voyager probe

FLOSS Weekly Episode 777: Asterisk — Wait, Faxes?

voyager probe

By using our website and services, you expressly agree to the placement of our performance, functionality and advertising cookies. Learn more

COMMENTS

  1. Voyager

    Check the latest data on Voyager 1 and Voyager 2, the two spacecraft that have left the solar system and entered interstellar space. See their distance from Earth and Sun, cosmic ray levels, instrument status and more.

  2. Voyager program

    A poster of the planets and moons visited during the Voyager program. The Voyager program is an American scientific program that employs two interstellar probes, Voyager 1 and Voyager 2.They were launched in 1977 to take advantage of a favorable alignment of the two gas giants Jupiter and Saturn and the ice giants, Uranus and Neptune, to fly near them while collecting data for transmission ...

  3. Voyager

    This is a real-time indicator of Voyager 1's distance from Earth in astronomical units (AU) and either miles (mi) or kilometers (km). Note: Because Earth moves around the sun faster than Voyager 1 is speeding away from the inner solar system, the distance between Earth and the spacecraft actually decreases at certain times of year.

  4. Voyager

    Learn about the twin Voyager spacecraft, which have been exploring the solar system since 1977 and are now in interstellar space. Find out how they discovered new facts about Jupiter, Saturn, Uranus and Neptune, and how they are preparing for the Voyager Interstellar Mission.

  5. NASA knows what knocked Voyager 1 offline, but it will take a while to

    That is saying something because Voyager 1 and 2 are NASA's longest-lived spacecraft. They launched 16 days apart in 1977, and after flying by Jupiter and Saturn, Voyager 1 is flying farther from ...

  6. Voyager

    Learn about the twin Voyager spacecraft that are the only ones to explore the outer solar system and beyond. Find out their science goals, where they are now, what's on the golden record, and the latest news.

  7. Voyager, NASA's Longest-Lived Mission, Logs 45 Years in Space

    Beyond Expectations. Voyager 2 launched on Aug. 20, 1977, quickly followed by Voyager 1 on Sept. 5. Both probes traveled to Jupiter and Saturn, with Voyager 1 moving faster and reaching them first. Together, the probes unveiled much about the solar system's two largest planets and their moons.

  8. Voyager, NASA's Longest-Lived Mission, Logs 45 Years in Space

    Voyager 2 is the only spacecraft to ever fly close to Uranus and Neptune, and the only one to have a gold record with messages for future travelers. Learn how the twin Voyagers have been operating for 45 years, studying the Sun and the heliosphere, and providing insights into interstellar space.

  9. Finally, engineers have a clue that could help them save Voyager 1

    Caltech/NASA-JPL. 209. It's been four months since NASA's Voyager 1 spacecraft sent an intelligible signal back to Earth, and the problem has puzzled engineers tasked with supervising the probe ...

  10. Engineers Pinpoint Cause of Voyager 1 Issue, Are Working on Solution

    Launched in 1977, the twin Voyager spacecraft flew by Saturn and Jupiter, and Voyager 2 flew by Uranus and Neptune. They are both exploring interstellar space, outside the bubble of particles and magnetic fields created by the Sun, called the heliosphere. Voyager 2 continues to operate normally. News Media Contact Calla Cofield

  11. NASA engineers discover why Voyager 1 is sending a stream of gibberish

    Launched in 1977, Voyager 1 zipped past Saturn and Jupiter in 1979 and 1980 before flying out into interstellar space in 2012. It is now recording the conditions outside of the sun's protective ...

  12. After 45 years in space, the Voyager probes are just starting out

    The Voyager 1 and Voyager 2 space probes launched 45 years ago, the first on Aug. 20, 1977 and the second on Sept. 5, and they are now the farthest human-made objects from Earth, at about three ...

  13. How the Voyager probes keep going and going decades after launch

    The Voyager spacecraft were built and continue to be operated by NASA's Jet Propulsion Laboratory, in Pasadena, Calif. Caltech manages JPL for NASA. The Voyager missions are a part of NASA's ...

  14. Scientists Figured Out How to Probe the Boundary of the Solar System

    While NASA has sent two probes out past our heliosphere—Voyager 1 and 2—there's still a lot we don't know about the protective shield around the Solar System. A proposed Interstellar Probe ...

  15. NASA's Longest-Lived Mission: Voyager Probes Log 45 ...

    Launched in 1977, the twin Voyager probes are NASA 's longest-operating mission and the only spacecraft ever to explore interstellar space.. Launched in 1977, NASA's twin Voyager spacecraft inspired the world with pioneering visits to Jupiter, Saturn, Uranus, and Neptune.Their journey continues 45 years later as both probes explore interstellar space, the region outside the protective ...

  16. NASA's Voyager Spacecraft Still Reaching for the Stars After 40 Years

    The Voyagers have set numerous records in their unparalleled journeys. In 2012, Voyager 1, which launched on Sept. 5, 1977, became the only spacecraft to have entered interstellar space. Voyager 2, launched on Aug. 20, 1977, is the only spacecraft to have flown by all four outer planets - Jupiter, Saturn, Uranus and Neptune.

  17. Voyager 1

    Spacecraft components. The 3.7 m (12 ft) diameter high gain dish antenna used on the Voyager craft. Voyager 1 was constructed by the Jet Propulsion Laboratory. It has 16 hydrazine thrusters, three-axis stabilization gyroscopes, and referencing instruments to keep the probe's radio antenna pointed toward Earth.

  18. Mystery issue experienced on NASA's Voyager 1 probe from 1977

    The Voyager 1 probe is still exploring interstellar space 45 years after launching, but it has encountered an issue that mystifies the spacecraft's team on Earth. Voyager 1 continues to operate ...

  19. NASA's Voyager 1 probe glitch caused by corrupted memory hardware

    Voyager 1 launched in 1977, less than a month after its twin probe, Voyager 2, began its own journey to space. The probe ventured into interstellar space in August 2012, becoming the first ...

  20. NASA's Voyager 1 probe has been glitching for months and we ...

    Voyager 1 launched in 1977, less than a month after its twin probe, Voyager 2, began its own journey to space. The probe ventured into interstellar space in August 2012, becoming the first ...

  21. Voyager 1 stops communicating with Earth

    Voyager 1 is so far away that it takes 22.5 hours for commands sent from Earth to reach the spacecraft. Additionally, the team must wait 45 hours to receive a response. Keeping the Voyager probes ...

  22. Voyager 1 Issue Tracked Down To Defective Memory Chip

    After more than forty-six years all of us are likely to feel the wear of time, and Voyager 1 is no different. Following months of harrowing troubleshooting as the far-flung spacecraft stopped ...